М.С. Нишанбаева1, Ш.А. Темурова2, З.А. Назарова1 РАЗРАБОТКА ТЕХНОЛОГИИ БИОЛОГИЧЕСКИ АКТИВНЫХ ДОБАВОК ИММУНОМОДУЛИРУЮЩЕГО ДЕЙСТВИЯ НА ОСНОВЕ NIGELLA SATIVA L. NIGELLA SATIVA L. АСОСИДА ИММУНМОДУЛЛОВЧИ ТАЪСИРГА ЭГА БИОЛОГИК ФАОЛ КЎШИМЧАЛАР ТЕХНОЛОГИЯСИНИ ИШЛАБ ЧИКИШ

- 1. Ташкентский фармацевтический институт
- 2. ГУП «Государственный центр экспертизы и стандартизации лекарственных средств, изделий медицинского назначения и медицинской техники»

Впервые разработан научно-обоснованный состав биологически активных добавок к пище в виде пастилок, содержащих семена чернушки посевной Nigella sativa L. и кунжута, порошка имбиря и корицы, обеспечивающие достаточную эффективность иммуномодулятора и стабильность при хранении в соответствующей упаковке. Проведен качественный и количественный анализ предлагаемых пастилок на содержание действующих веществ.

Ключевые слова: биологически активная добавка, пастилки, чернушка посевная, имбирь, корица, кунжут.

Введение. В настоящее время актуальна проблема восстановления иммунологических нарушений с помощью корректирующих иммунитет средств, так как почти любое заболевание, как правило, сопровождается развитием иммунодефицитных состояний. Из литературных данных следует, что за последнее десятилетие достигнуты значительные успехи в поиске, изучении, разработке и создании новых иммуномодулирующих средств. Лекарственные растения и препараты выгодно отличаются от своих синтетических аналогов сродством к тканям организма, малой токсичностью и доступностью, являются ценным сырьем для профилактики и лечения различных заболеваний, связанных с нарушением иммунной системы организма. К растениям, обладающим иммуномодулирующим действием, следует отнести растения не только с тонизирующими или адаптогенными свойствами, но и растения, используемые в народной медицине, как противовоспалительные и др. В литературе встречаются также сведения о наличии иммуномодулирующих свойств у пищевых растений [4].

В республике уделяется особое внимание производству биологически активных добавок на основе местного растительного сырья и обеспечению населения безопасными и дешевыми лекарственными средствами. В этом аспекте важное значение имеют намеченные задачи в четвертом направлении стратегии по дальнейшему развитию Республики Узбекистан в 2017-2021 гг., а также в Постановлении Президента ПП-3489 от 23 января 2018 г. «О мерах по дальнейшему упорядочению производства и ввоза лекарственных средств и изделий медицинского назначения» и в Указе Президента Республики Узбекистан УП-5707 от 10 апреля 2019 года «О дальнейших мерах по

ускоренному развитию фармацевтической отрасли республики в 2019-2021 годах» [4, 6]. Многие известные фармацевтические компании в разных странах мира добавляют семена и масло черного тмина в различные лекарственные препараты (арабские государства, Франция, Германия, Италия, Великобритания, США и др.). Семена чёрного тмина выращивают в экологически чистых районах без применения вредных для здоровья человека химических веществ. Холодным прессованием (отжим) семян вырабатывают масло, содержащее в своем составе ценное растительное масло до 36 %. В масле черного тмина содержится более 100 различных компонентов, 50 из них являются катализаторами обменных процессов в организме человека. Содержащиеся в масле черного тмина незаменимые Омега-6 и Омега-9 жирные кислоты способствуют улучшению работы сердечно-сосудистой, нервной и пищеварительной систем, нормализации липидного обмена, играют важную роль в укреплении иммунитета и очищении организма от всевозможных вредных веществ. Входящие в состав масла витамин Е и ненасышенные жирные кислоты обладают противовоспалительным свойствам, принимают активное участие в формировании иммунитета. В настоящее время выпускаются и используются препараты в виде пастил и карамели. Пастилки – твердая лекарственная форма, получаемая путем формования пластичной смеси лекарственных веществ с основой, содержащей вспомогательные гелеобразующие вещества (желатин с глицерином, гуммиарабик с сахарозой и др.), предназначенная для применения на слизистые оболочки рта и глотки, реже – для приема внутрь. Данные лекарственные формы удобны для применения, приятные на вкус, цвет и запах, имеют быстрый фармакологический эффект и отпускаются без рецепта, потому имеют широкий спрос среди населения.

Цель исследования. Целью исследования являлась разработка технологии биологически активных добавок иммуномодулирующего действия на основе местного растительного сырья — черного тмина (Nigella sativa L.) в форме пастилок.

Материалы и методы. Семена чернушки посевной и кунжута, корни имбиря, корица и мёд, являются адаптогенами. Основное предназначение адаптогенов заключается в укреплении иммунитета, повышении сопротивляемости организма вирусным и бактериальным инфекциям.

В семенах чернушки посевной (черный тмин) содержится полувысыхающее жирное масло (31-44 %), гликозид мелантин, эфирное масло (0,8-1,5 %). Данные по химическому составу масла черного тмина свидетельствуют о том, что оно представлено насыщенными, монои полиненасыщеннымижирными кислотами. В жирнокислотном составе масла семян лидирующие позиции занимают линолевая (55-65 %), олеиновая (15-18 %) и пальмитиновая (10-12 %) кислоты. В связи с превалирующим содержанием линолевой кислоты в составе масла семян черного тмина, оно относится к группе полувысыхающих. В масле черного тмина идентифицированы также глицерин, селинен, бензойная и фенилуксусная кислоты [4].

В составе кунжута из антиоксидантов наиболее важны гамма-токоферолы (витамин Е) и уникальные для этого растения лигнаны (сезамин, сезамолин). Кунжутное масло содержит Омега-3, Омега-6, Омега-9. Семена кунжута содержат большое количество минеральных веществ - солей К, Р, Мд, Са, Na [2].

Корневище	имбиря	содержит	терпен	
цингибирин около 70%, а также камфен,				
цинеол,				
бисаболен,	бориеон	интропі	нинанол	
витамины	борнеол,	цитраль,	линалоол,	
С,	B1,	B2	И	незаменимые

аминокислоты.

Корица содержит пищевые волокна, дубильные вещества, эфирные масла, полифенол, кумарин, эвгенол, витамины А, С, В1, В2, В3, В6, В9, Е, РР, К, а также минеральные элементы (магний Mg - 60 мг, калий К - 431 мг, кальций Са - 1002 мг, натрий, железо, медь, фосфор, марганец, селен, цинк). Среди химических компонентов эфирного масла корицы имеются эвгенол (около 10%),

циннамальдегид, линалоол, филландрена, бетакариофиллен, и метилхавикол [3]. В состав корицы входят альфа- и бета-каротин, лютеин и

Нами было изготовлено три состава пастилок с использованием черного тмина и кунжута в различных видах: 1) масло и масло; 2) измельченные семена и масло; 3) измельченные семена. Компонентный состав пастилок приведен в таблице 1.

Таблина 1

Компонентные составы пастилок

Rominonem i indic coc	crabbi macrimor		
№	Наименование компонента	Составы, г	
1	2	3	
1.	Чернушка посевная		5,0
	семена измельченные	-	3,0
2	Кунжут семена		
Z.	измельченные	-	-

3.	Масло черного тмина	5,0	-
4.	Масло кунжута	5,0	1,0
5.	Порошок имбиря	5,0	5,0
6.	Порошок корицы	5,0	5,0
7.	Желатин	10,0	10,0
8.	Лимонная кислота	0,5	0,5
9.	Мёд	20,0	10,0
10.	Бензоат натрия	0,1	0,1
11.	Глицерин	10,0	10,0
12.	Вода очищенная	до 100,0	до 100,0

Третий состав, содержащий измельченные семена кунжута и черного тмина, был выбран с учетом того, что в жмыхе семян сохраняются пищевые волокна.

В качестве образующих желе агентов были изучены вышеприведенные составы с пектином, агар-агаром и желатином, экспериментально при сравнении полученной консистенции наиболее мягкой и пластичной получилась пастила на желатине и при хранении состав с желатином сохраняет первоначальную консистенцию. В связи с этим, в таблице 1 приводятся составы только с желатином. Мёд использован как корригент, а в качестве пластификатора глицерин.

Технологический процесс включил смешивание порошкообразных веществ, изготовление желатинового геля, подготовку и введение вспомогательных веществ, корригирующих вкус и стабилизирующих иммуномодулятор. Пастилки были изготовлены путем отливки (формовки) в формы объемом 1 мл пластичной массы, содержащей ароматизированную и подслащенную основу с введенным в нее действующими веществами. Форма для отлива пластичной массы выбрана овальная, так как после затвердевания пастилки извлекаются из форм без потерь и сохраняя свой эстетичный вид. В качестве основы иммуномодулирующих пастилок было использовано природное высокомолекулярное соединение – желатин, с добавлением корригентов вкуса и запаха. Физико-химические и технологические свойства пастилок определены в соответствии с требованиями ОФС «Пастилки» ГФ XIV, а именно: описание, однородность массы, распадаемость, потеря в массе при высушивании на влагомере. С целью обеспечения безопасности и ценности БАДов важным условием явилось соблюдение требований к производству и обороту БАД к пище СанПиН №0258-08 РУз. Пастилки готовили с соблюдением асептических условий. Микробиологическую чистоту определили в испытательной лаборатории ООО «Dori vositalarini standartlash ilmiy markazi». Результаты и обсуждение. Описание

пастилок проводили органолептическим методом. Однородность массы определили взвешиванием 20 пастилок: сначала взвесили каждую пастилку в отдельности с точностью до 0,001 г и рассчитали среднюю массу. На приборе для определения распадаемости таблеток и капсул ZT 324 ERWEKA для проведения испытания отобрали 18 пастилок. В каждую из 6 трубок поместили по одной пастилке и диск. Распадаемость пастилок определяли путем погружения корзинки в сосуд с водой при температуре (37±2) °С. Все образцы полностью распались в течении 3 минут [1]. Потеря в массе при высушивании определена на влагомере MB 35 Halogen. Также определен показатель рН водного извлечения пастилок (1:10) потенциометрическим методом с помощью pH-метра «Metler Toledo» (Германия). Количественное определение массовой доли жира в пастилках иммуномодулирующего действия проведено рефрактометрическим методом на RX-5000 і. Помимо рефрактометрического, существуют бутирометрический метод и экстракционный метод с предварительным гидролизом навески. Рефрактометрический метод выбран на том основании, что каждая аналитическая лаборатория оснащена рефрактометром, что облегчает контроль качества готовой продукции, к тому же рефрактометрический метод является простым, точным и доступным методом анализа. Навеску 1,0 -5,0 г измельченного сырья залили трехкратным количеством растворителя (хлороформа, тетрахлоруглерода и др.), взбалтывали в течение 15 мин, вытяжку отфильтровали в колбочку, растворитель полностью отогнали, остаток подсушили и определили коэффициент преломления смеси жиров. Определение коэффициента преломления проводили при 20±0,2 °C. Массовую долю жира вычислили в процентах в пересчете на сухое вещество. Предварительно определяли влажность сырья в процентах. При вычислении процентного содержания жира использовали показатели преломления и плотности жиров, но так как в пастилках содержится смесь жиров за плотность жира принимали показатель - 0,920 [7]. Результаты проведенных испытаний приведены в таблице 2.

Таблица 2

Показатели качества иммуномодулирующих пастилок

0	Пастилки темно-коричневого цвета с шероховатой поверхностью,		
Описание	обладают		
	запахом корицы, имеют сладкий		
	слегка жгучий вкус.		

	C 1.000		
Однородность массы	Средняя масса 1,290 г, допустимое		
одпородность массы	отклонение ±7,5 %		
Распадаемость	В воде 3 мин (не более 30 мин)		
Потеря в массе при	Потори состорини 10 26%		
высушивании	Потери составили 10,36%		
рН водного извлечения (1: 10)	6.20		
потенциометрическим методом	0,20		
Микробиологическая чистота	6,20 Общее число аэробных микроорганизмов — 10 КОЕ в 1 г (не более 104 КОЕ в 1 г) Общее число дрожжевых и плесневых грибов — менее 10 КОЕ в 1 г (не более 102 КОЕ в 1г) Энтеробактерии и другие группы — отсутствуют (не более 102 КОЕ в 1 г) Отсутствуют Escherichia coli в 1 г (мл) Отсутствуют Salmonella spp.в 10 г (мл) Отсутствуют Staphylococcus aureus		
Количественное определение массовой доли жира	в 1 г (мл) Рефрактометрически 11,7 %		

Вывод. исследований, обоснованный биологически	На	основании	проведенных
впервые	предложен	научно	
состав	И	технология	
активных	добавок	В	виде
пастилок, содержащих семена черного тмина Nigella sativa L., порошков имбиря и корицы, а			
также	семена	кунжута.	Подобраны
компонентные составы пастилок. В качестве			
основы	иммуномодулирующих	пастилок	

предложено использование природного высокомолекулярного соединения – желатин, с

добавлением корригентов вкуса и запаха.

Определены показатели качества, нормируемые

для иммуномодулирующего БАД в виде

пастилок и проведен количественный анализ

суммы действующих веществ, а именно жирных масел.

Литература

- 1. Государственная Фармакопея XIV изд. // Лекарственные формы лекарственных средств и методы их анализа. Лекарственные формы лекарственных средств. Москва - 2018. №2. - С. 2031-2033.
- 2. Мусаева Н.А., Азизов И.К., Алиев Х.У. Противовоспалительные и иммуномодулирующие свойства масла кунжутного // Монография, Ташкент - 2019 - С.99.
- 3. Наймушина Л.В. Изучение накопления флавоноидов имбирного корня при двухфазной экстракции // Вестник Красноярского государственного аграрного университета. Красноярск – 2012. –

№9. - C. 210-214.

4. Постановление Президента ПП-3489 от 23 января 2018 г. «О мерах по дальнейшему упорядочению производства и ввоза лекарственных средств и изделий медицинского назначения». 5. Темурова Ш.А., Азизов И.К., Мусаева Н.А. Фармакогностический анализ семян чернушки посевной Nigella sativa L. // Фармацевтический журнал. – Ташкент - 2005 - №4 – С. 32-33. 6. Указ Президента Республики Узбекистан УП-5707 от 10 апреля 2019 года «О дальнейших мерах по ускоренному развитию фармацевтической отрасли республики в 2019-2021 годах». 7. Эллер К.И., Пименова В.В. Руководство по методам контроля качества и безопасности биологически активных добавок к пище. – Москва - 2004 – С. 16-23.