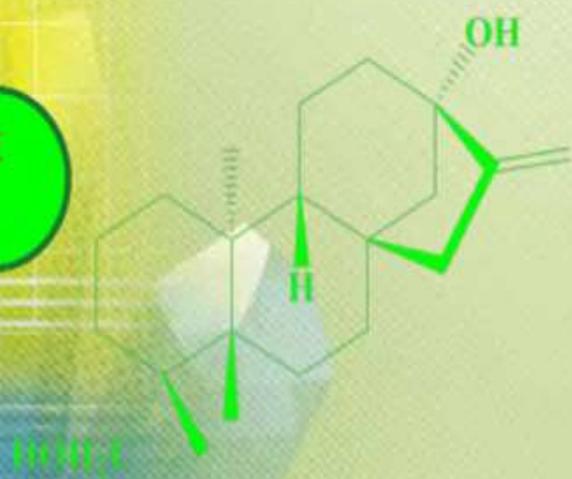


Academy of Sciences
of the Republic of Uzbekistan

S.Y. Yunusov Institute of the
Chemistry of Plant Substances

Journal of Chemistry of Natural Compounds


ACTUAL PROBLEMS OF THE CHEMISTRY OF NATURAL COMPOUNDS

SCIENTIFIC AND PRACTICAL CONFERENCE
OF YOUNG SCIENTISTS

ABSTRACTS

April 23, 2025 year

Tashkent

CONFERENCE TOPICS

1. Chemistry, biology, pharmacology, technology and biotechnology of natural compounds, organic chemistry;
2. Successes and problems of creation of new drugs.

ORGANIZING COMMITTEE

Chairman: Acad. Sagdullaev Sh. Sh.

Co-Chairman: Vice-President of the AS RUz, Prof. Turdikulova Sh.U.

Members

Acad. Turaev A.S.
Prof. Abdullaev N.D.
Prof. Aripova S.F.
Prof. Azimova Sh.S.
PhD. Bobakulov Kh.M.
Prof. Botirov E.Kh.
Prof. Elmuradov B.J.
Prof. Gusakova S.D.
Dr. Mamatkhanova M.A.
Dr. Normakhamatov N.S.
Dr. Nishanbaev S.Z.
Prof. Tursunkhodjaeva F.M.
Dr. Sadikov O.Z.
Prof. Vinogradova V.I.

Executive Committee

Abdurazzakov A.Sh.	Khasanov Sh.Sh.
Abdurakhmanov J.M.	Ibotov Sh.Kh.
Okmanov R.Y.	Yarikaganova A.M.
Siddikov D.R.	Abbasova G.A.
Toshmurodov T.T.	Kalbaeva G.K.
Okhundedaev B.S.	Saidov S.S.
Khodiralieva F.A.	Adizov Sh.M.

S.Y. Yunusov Institute of the Chemistry of Plant Substances,
77, Mirzo-Ulugbek Str., Tashkent, 100170, Uzbekistan

M.U. Zhuraev, D.R. Siddikov, E.Kh. Botirov Flavonoids and phenylpropanoids of the aerial parts of <i>Salvia sarawschanica</i>	22
A.A. Siddikova, R.K. Rakhmanberdyeva, S.M. Allaberganova, F.A. Zulpanov, U.M. Yakubov, B.Zh. Elmuradov Compositions of polysaccharides with biologically active synthetic compounds to improve their solubility and bioavailability	23
S.Kh. Mullabaeva, D.R. Siddikov, E.Kh. Botirov Composition of the aboveground part of <i>Perovskia botschantzevii</i>	24
D.M. Mukhtarkhuzhaeva, F.A. Kodiraliyeva, R.K. Rakhmanberdiyeva Studying of carbohydrate and monosaccharide composition of <i>Crotalaria juncea</i> seeds	25
PUBLICATIONS	
S.I. Atkiyayeva, B.S. Okhundedayev Chemical components of <i>Perovskia scrophulariifolia</i> roots	29
N.A. Abdullabekova, Z.U. Usmanalieva Development of UV-spectrophotometric analysis methods for torasemide	30
N.U. Abdukhalikova, Z.A. Yuldashev, H.I. Primuhamedova Development of a UV-spectrophotometric method for the analysis of mephedrone	31
U.D. Matchanov, R.S. Esanov, S.R. Shamuratova, A.D. Matchanov Stability of the complex obtained from quarsetin with monoammonium salt of glycyrrhizinic acid	32
U.D. Matchanov, D.T. Asilbekova, Kh.M. Bobakulov, N.D. Abdullaev, M.J. Rahmatova, A.M. Nigmatullaev Study of the "Sadaraykhon" variety of <i>Ocimum basilicum</i> L. cultivated in Uzbekistan	33
G.M. Ikromova Composition and antimicrobial activity of <i>Perovskia kudrjaschevii</i> essential oil	34
R.M. Ruzibaeva, R.Y. Okmanov, B. Tashkhodzhaev, S.F. Aripova (1S)-Laudanidine alkaloid from <i>Lindelofia macrostyla</i>	35
R.M. Ruzibaeva, S.F. Aripova Vitamin composition of some types of plants of the Boraginaceae family	36
R.M. Ruzibaeva, S.F. Aripova Flavonoid composition of some types of plants of the Boraginaceae family	37
F.R. Egamova, A.B. Bazarbayeva, G.B. Sotimov, D.R. Siddikov, V.N. Syrov The actoprotective effect of a dry extract from the aerial part of <i>Cistanche salsa</i>	38
Kh.N. Olimova, U.Kh. Kurbanov, K.K. Turgunov, N.I. Mukarramov Loliolide lactone isolated from <i>Rindera cyclodonta</i> plant	39
N. Akhmedova, K. Yakubjanov, S. Eralieva, D. Turdaliev, J. Abdurakhmanov, A. Boymirzaev, S. Sasmakov, Sh. Azimova Investigation of catalytic properties of recombinant uridine (UP) and thymidine phosphorylases (TP) expressed	40
M.A. Khamdamova, R.S. Esanov, M.B. Gafurov Obtaining supramolecular complexes of the monoammonium salt of glycyrrhizic acid with some antibiotics	41
D.E. Dusmatova, R.F. Mukhamatkhanova, Kh.M. Bobakulov, D.Sh. Tojiboeva, I.D. Sham'yanov Volatile compounds of the aerial part of <i>Tragopogon graminifolius</i>	42
D.Sh. Tojiboeva, R.F. Mukhamatkhanova, S.A. Sasmakov, Kh.M. Bobakulov, D.E. Dusmatova, Sh.S. Azimova, I.D. Sham'yanov Volatile components of <i>Handelia trichophylla</i>	43

DEVELOPMENT OF UV-SPECTROPHOTOMETRIC ANALYSIS METHODS FOR TORASEMIDE

N.A. Abdullabekova¹, Z.U. Usmanalieva²

¹*Tashkent Pharmaceutical Institute*

²*Pharmaceutical Institute of Education and Research*

e-mail: nargizachemist1987@mail.ru, Tel: +998974472329

Relevance: Torasemide is a diuretic drug, when it is used incorrectly, there is an increase in water and electrolyte imbalances in the cardiovascular system: hypovolemia, hypokalemia, hyponatremia. Torasemide is a loop diuretic administered in low doses. At higher doses, torasemide induces potent diuresis, characterized by a maximal effect. Overdose can lead to intensified diuresis with the risk of fluid and electrolyte loss, resulting in headache, weakness, drowsiness, arterial hypotension, and vascular insufficiency. Gastrointestinal tract disorders are possible. Patients with impaired liver function exhibit an increased plasma concentration of torasemide, attributed to decreased hepatic metabolism. In patients with cardiac or hepatic insufficiency, the half-life of torasemide and its M5 metabolite is slightly prolonged.

Aim: To develop a UV-spectrophotometric method for the analysis of torasemide.

Methods: The UV-spectrophotometric analysis of the torasemide standard was performed using Agilent Technologies 8453E Spectroscopy System. For this purpose, 0.02 g of the torasemide standard was weighed, transferred into a 100 mL volumetric flask, dissolved in 0.1 N hydrochloric acid, and diluted to the mark. The solution was thoroughly mixed and filtered through a 0.45 μ m filter (Solution A). Working standard solutions (Solution B) containing 2-20 μ g/mL of torasemide were prepared from Solution A. Analysis was performed in a 10 mm path length cuvette, within a 200 to 400 nm wavelength range, using 0.1 N hydrochloric acid as the reference.

Results: It was confirmed that the 0.1 N hydrochloric acid solution of torasemide exhibits a maximum absorbance at a wavelength of 287 nm.

Conclusion: The UV-spectrophotometric analysis of torasemide was studied. It was determined that the 0.1 N hydrochloric acid solution of torasemide has a maximum absorbance at 287 nm. The linearity, accuracy, and repeatability of the method were evaluated. The specific and molar absorptivity of torasemide were found to be 34.54 and 1263, respectively. The quantitative analysis of torasemide using the UV-spectrophotometric method was calculated through the constructed calibration curve, with an average content of 100.23%. The average relative error was found to be $E_{ave}=0.486$. The obtained results indicate the potential applicability of this method for determining torasemide isolated from biological objects and biological fluids.