Радикальная полимеризация акриламид N-метилен молочной кислоты

*С.М. Хазраткулова, М.Г. Мухамедиев,М.А. Махкамов,

Г.И.Мухамедов

В работе впервые синтезирован новый мономер - акриламидо-Nметиленмолочная кислота. Изучена и сравнена с акрилоилгликолевой кислотой кинетика его радикальной полимеризации в водном растворе. Установлено, скорость радикальной полимеризации ЧТО исследуемых мономеров в водном растворе в присутствии динитрила азоизомасляной кислоты подчиняется обычным закономерностям радикальной полимеризации акриловых мономеров в растворе, При этом установлено, что акриловый мономер, где заместитель связан с винильной группой сложноэфирной связью намного активнее мономера, где присоединение осуществляется за счёт амидной связи. Такое различие в реакционной способностях этих мономеров объясняется различной подвижностью заместителя у двойной связи и более высокой электроотрицательностью атома кислорода по сравнению с атомом азота, приводящей к более сильному уменьшению плотности электронов у винильной группы мономера. Изучением влияния рН раствора на кинетику радикальной полимеризации акриламидо-N-метиленмолочной кислоты установлен экстремальный характер данной зависимости с минимумом в нейтральной среде. При этом

 $^{^*}$ *С.М. Хазраткулова* - старший лаборант химического факультета НУУз.

М.Г. Мухамедиев – д.х.н, проф зав. Кафедрой химии полимеров химического факультета НУУз.

М.А. Махкамов – к.х.н., старший преподаватель химического факультета НУУз.

Г.И.Мухамедов - д.х.н, проф. Ректор НУУз.

значение $K_p/K_o^{0.5}$ изменялось симбатно скорости полимеризации. Так как добавление нейтральной соли приводило к возрастанию скорости радикальной полимеризации этого мономера, то наблюдаемый эффект объяснён теорией ионных пар Кабанова и Топчиева.

ВВЕДЕНИЕ

В последние годы особый интерес представляют водорастворимые и водонабухающие полимеры, поведение которых в водных средах существенно зависит от природы растворителя, рН среды, присутствия различных веществ, температуры и других факторов. Такие полимеры перспективны для применение в медицине, биотехнологии, электронике (для создания датчиков и сенсоров), для решения экологических задач и т.д.[1-3].

Одним из методов получения таких полимеров является радикальная полимеризация мономеров содержащих в боковой цепи различные функциональные группы [4].

В данной работе приведены результаты исследования по синтезу и радикальной полимеризации нового мономера на основе молочной кислоты - акриламидо- N-метиленмолочной кислоты (АА-N-ММК). Выбор данного объекта исследования обусловлен тем, что полимеры и сополимеры, полученные поликонденсацией гликолевой и молочной кислот, из-за своей безвредности находят широкое применение в биотехнологии и медицине [5].

К тому же, ранее проведенные исследования, по синтезу мономеров и карбоцепных полимеров на основе другой природной оксикислоты – гликолевой, показали их перспективность. Полимеры, синтезированные на

основе ненасыщенных производных гликолевой кислоты проявляли pH – чувствительные свойства и обладали малой токсичностью и были не аллергены [6].

Экспериментальная часть

Синтез акриламидо-N-метиленмолочной кислоты. В двухголовую колбу с мешалкой помещали 15 гр (0,21 моль) акриламида, 20 мл 40% раствора формальдегида (0,27 моль), 50 мл 40% водного раствора молочный кислоты (0,22 моль) и 0,03 гр гидрохинона. Смесь перемешивали при температуре 323К 3 часа. Воду упаривали в вакууме, мономер сушили над хлористым кальцием, промывали сначала хлороформом, потом ацетоном. Чистоту мономера определяли c помощью метода тонкослойной хроматографии. Для этого хроматографию проводили на UV-254 Силуфоле, используя разделительную систему этиловый спирт: ацетон в соотношении 2 :1. Мономер проявлялся в виде одного пятна с $R_f=0,56$. Полученный мономер представляет собой желтоватую, вязкую жидкость, растворяющуюся в воде, спирте, но не растворяющийся в хлороформе, ацетоне и неполярных растворителях.

Физико-химические исследования мономеров и синтезированных полимеров ИК-спектры регистрировали спектрометре Specord IR-75 в области_4000 - 400 см⁻¹(КВr). ПМР-регистрировали спектрометре UNITY Plus 400 (Varian), 0 — ГМДС. Плотность мономеров и полимеров определяли пикнометрическим методом [7]. Кинетику радикальной полимеризации

изучали дилатометрическим методом. Для расчётов конверсии мономера в полимер использовали коэффициент контракции равный 0,16. Потенциометрическое титрование мономера и полимера проводили в термостатируемых ячейках на универсальном иономере ЭВ-74, который предварительно калибровали по стандартным буферным растворам.

Результаты и их обсуждение:

При синтезе AA-N-ММК была использована реакция Манниха [8]. В данной реакции происходит взаимодействия акриламида с формальдегидом с образованием метилолакриламида, последний конденсируясь с молочной кислотой, образует AA-N-ММК по следующей схеме:

$$\label{eq:ch2} \begin{split} \operatorname{CH}_2 &= \operatorname{CH} - \operatorname{CO} - \operatorname{NH}_2 + \operatorname{CH}_2 \operatorname{O} + \operatorname{CH}_3 \operatorname{CHOHCOOH} \rightarrow \\ \operatorname{CH}_2 &= \operatorname{CH} - \operatorname{CONHCH}_2(\operatorname{CH}_3) \operatorname{C(OH)COOH} + \operatorname{H}_2 \operatorname{O} \end{split}$$

акриламидо - N-метиленмолочная кислота

При изучении зависимости выхода мономера от соотношения исходных реагентов установлено, что наибольший выход (≈62%) АА-N-ММК наблюдается практически при эквимолярных соотношениях исходных компонентов. Наиболее приемлемым методом синтеза АА-N-ММК является одновременная загрузка исходных компонентов и нагревание реакционной смеси при 60 °C в течении 3 часов при постоянном перемешивании. Химическое строение синтезированного мономера идентифицировали с помощью ИК- и ПМР- спектров, расчетами молекулярной рефракции и определением кислотного числа. Некоторые физико-химические показатели полученного мономера представлены в таблице 1.

Таблица 1 Некоторые физико-химические показатели акриламид-Nметиленмолочной кислоты

	Элементный состав %											
Мономер	MR, cm ³ /Γ		${n_{ m D}}^{20}$	${d_4}^{20}$	С		Н		N		Кис.числ	
	найд	выч		г/см ³	найд	выч	найд	выч	найд	выч	найд	
AA-N-	44.5	42.0	1 1010	1.05	40.5	40			0.5	0.0	220	221
ММК	41,5	42,0	1,4312	1,05	48,5	49	6,3	6,8	8,5	8,8	230	231

ИК-спектры мономера характеризуется полосами поглощения в области 3500-3000 см⁻¹, соответствующим как валентным колебаний — ОН, так и амидных групп, что затрудняет точную их идентификацию. Полоса поглощения, обусловленная карбонильной группы карбоксила проявляется вблизи 1750 см⁻¹, для деформационных колебаний NH-группы характерна полоса поглощения в области 1500 см⁻¹, полоса поглощения вблизи 1690 см⁻¹ характеризует валентные колебания -С=С- связи, сопряжённой с С=О группой.

В ПМР - спектрах мономера наблюдаются группы сигналов акрилового фрагмента при 6,15 м.д. (2 H) и 5,875 м.д. (1 H) и два эквивалентных дублета с расщеплением 14 Гц, принадлежащих протонам группы NCH₂ с центрами

при 2,9 м.д. (экваториальный 1H) и 2,75 м.д. (аксиальный 1H). сигнал при 4,88 м.д. принадлежит протонам группы NH, OH. Так же наблюдается присутствие триплета от протонов группы CH₃ при 1,4 м.д. двух квартетов с разной интенсивностью в области 4,3 м.д.

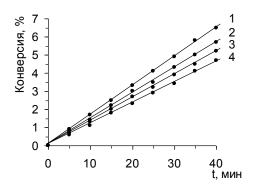


Рис.1. Кинетика полимеризации AA-N-MMK в воде при различных концентрациях инициатора. ([M]=0,6моль/л, T=333K) 1, 2, 3, 4- концентрация инициатора 0.6×10^{-2} ; 0.48×10^{-2} ; 0.36×10^{-2} ; 0.36×10^{-2} ; 0.36×10^{-2} моль/л, соответственно.

Радикальную полимеризацию AA-N-МК изучали методом химического инициирования, в водном растворе используя в качестве инициатора — динитрил- азо-изомасляной кислоты (ДАК) дилатометрическим методом, при 333К в зависимости от концентрации инициатора и мономера.

На рис.1,2 переставлены кинетические прямые полимеризации AA-N-MMK, полученные при различных концентрациях инициатора ДАК (рис.1) и мономера. Видно, что с увеличением концентрации как инициатора, так и мономера скорость полимеризации возрастает. Из логарифмических зависимостей скорости полимеризации от концентрации инициатора и мономера рассчитаны порядки реакции по концентрациям инициатора и мономера, которые соответственно равны 0,5 и 1,4.

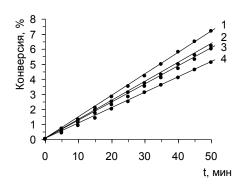


Рис. 2. Кинетика полимеризации AA-N-MMK при различных концентрациях мономера. ([I]= 0.6×10^{-2} моль/л, T=333K) 1.2.3.4-концентрация мономера 1.08; 0.84; 0.6; 0.36 моль/л, соответственно.

Отличие порядка реакции по мономеру от теоретического - первого, при полимеризации AA-N-ММК свидетельствует об ассоциированности данного мономера, характерной для карбоновых кислот и амидов. Таким образом, общее уравнение скорости радикальной полимеризации AA-N-ММК в водном растворе имеет следующий вид:

$$V=K\times [I]^{0,5}\times [M]^{1,37}$$

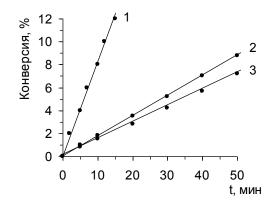


Рис.3. Кинетика полимеризации AA-N-MMK при различных температурах. 1-323; 2-333; 3-343К; [M]= 0.6моль/л, [I]= 0.6× 10^{-2} моль/л.

Влияние температуры на скорость полимеризации АА-N-ММК представлено на рис.3. Видно, что при повышении температуры, в исследованном интервале, скорость полимеризации равномерно повышается, Значение суммарной энергии активации, рассчитанное на основании данных рис.3. составляет 67 кДж/моль. Найденные значения порядков реакции, энергии активации при полимеризации - АА-N-ММК в водных растворах в присутствии ДАК в качестве инициатора свидетельствует о подчинении данной реакции обычным закономерностям радикальной полимеризации.

Как известно, ионизующиеся мономеры, а к ним относится и АА-N-MMK при радикальной полимеризации В водных растворах очень чувствительны к изменению природы среды. Это обусловлено тем, что по сравнению с неионогенными мономерами в таких мономерах проявляется ряд факторов (диссоциация, дополнительных комплексообразование, электростатические взаимодействия и т.д.), которые оказывают большое влияние на их эффективную реакционную способность в реакциях радикального присоединения, на общую кинетику процесса и механизм его отдельных элементарных стадий. В связи с этим возникает необходимость изучения влияния на скорость реакции полимеризации различных факторов, таких как рН среды, ионная сила раствора изменяющих диссоциирующую способность ионогенных групп. Изучение кинетики радикальной полимеризации АА-N-ММК при различных рН-среды, показало, что зависимости начальной скорости полимеризации от рН немонотонны и носят весьма специфический характер (рис.4).

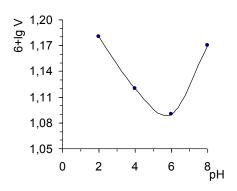


Рис.4. Логарифмическая зависимость скорости полимеризации AA-N-MMK от pH среды ([M]= 0.6 моль/л, [I]= 6×10^{-3} моль/л, T=333 K).

Из рис.4 видно, что скорость полимеризации сначала падает с увеличением рН-среды, принимает минимальное значение при рН=6 и затем возрастает. Добавлении КСІ в реакционный раствор приводит к увеличению (рис.5) скорости полимеризации.

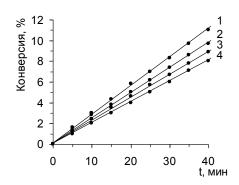


Рис 5. Кинетика полимеризации AA-N-ММК при различной ионной силе раствора. 1,2,3,4 — ионная сила раствора, соответственно, равно 0,1; 0,2; 0,3; 0,5; [M]=0,01 моль/л, [I]=0,42 \times 10⁻²моль/л, T=333K.

Эти результаты находятся в соответствии с данными, полученными другими исследователями, изучавшими радикальную полимеризацию карбоксилсодержащих мономеров [9].

Для выявления причины наблюдаемых эффектов были определены значения величины $K_p/K_o^{0.5}$ при полимеризации AA-N-MMK в изучаемых интервалах рН - среды и ионной силе раствора. Данный параметр определяли методом ингибирования, используя в качестве эффективного ингибитора иминоксильное соединение-2,2,6,6-тетраметилпиперидил-1-оксил (Танан) (Табл.2). Для сравнения в таблице приведены значения данного отношения для полимеризации акрилоилгликолевой кислоты (АГК) взятые из работы [10].

Таблица 2 Значения скорости инициирования и величины $K_p/K_0^{0.5}$ при полимеризации AA-N-MMK ([M]= 0,6 моль/л; [I]= 6×10^{-3} моль/л; T=333K), AГК. ([I]=2,44 $\cdot10^{-3}$ моль/л; [M]=0,384 моль/л; T=333K.)

Среда	V×10 ⁻⁵ , моль/л с	$V_{\rm ин} \times 10^{-8}$, моль/л с	$K_p/K_0^{0,5}$, $\pi^{0,5}/$ моль $^{0,5}c^{0,5}$			
	AA-N-MMK	AA-N-MMK	AA-N-MMK	АГК		
pH=2	2,2±0,3	1,3±0,19	0,5±0,075	2,58±0,39		
Вода (pH=6)	1,1±0,16	1,2±0,18	0,2±0,03	1,11±0,17		
рН=8	1,9±0,29	1,5±0,23	0,4±0,06	1,55±0,23		
μ=0,2 (pH=6)	1,8±0,26	1,3±0,19	0,26±0,039	1,39±0,21		

Из таблицы 2 видно, что изменение pH от 2 до 8 и добавление низкомолекулярной соли КСІ в реакционный раствор не приводят к изменению значения скорости инициирования. Однако, скорость

полимеризации и значение $K_p/K_0^{0,5}$ меняются симбатно. Следовательно изменение скорости реакции полимеризации AA-N-MMK в различных средах обусловлено стадиями роста или обрыва полимерных цепей.

Исходя из вышеизложенного и на основании литературных данных по полимеризации подобных мономеров известных как теория «ионных пар» В.Кабанова Д.Топчиева [9], реакцию роста полимерной цепи в различных средах можно представить следующими схемами:

реакция роста цепи АА-N-ММК при рН=6

реакция роста цепи АА-N-ММК при рН=2

реакция роста цепи акриламидо-N- метилен молочной кислоты при рН=8

$$-CH_{2} - \stackrel{H}{C} \cdot C \cdot CH_{2} = \stackrel{H}{C} \cdot CH_{2} = \stackrel{H}{C} \cdot CH_{2} = \stackrel{H}{C} \cdot CH_{2} = \stackrel{G}{C} \cdot CH_{2}$$

Видно, при рН=6 в растущей макроцепи что появляются отрицательные заряды, которые приводят к взаимному отталкиванию между растущей цепью и заряженными мономером, что замедляет данную реакцию. В кислой среде мономер не ионизован, поэтому скорость его полимеризации выше, чем при рН=6. В сильно щелочных условиях полимеризация усложняется влиянием ионов Na^+ или K^+ где эти ионы не только нивелируют взаимное отталкивание взаимодействующих компонентов, но и облегчают их взаимодействие. Поэтому повышение рН приводит к возрастанию скорости полимеризации. Аналогично добавление нейтральной соли при рН=6 приводит к возрастанию скорости полимеризации за счёт образования ионной пары между ионизованным мономером и растущей макроцепью. Видно, что скорость полимеризации от рН имеет такой же как и при полимеризации АГК экстремальный характер,. Однако имеются различия и на количественном уровне. В таблице 2 для сравнения приведены значения ${\rm K_p/K_0}^{0.5}$ полученные при радикальной полимеризации (АГК) [10] в тех же условиях. Видно, что эти значения намного выше, чем для изучаемого нами мономера. Такое большое различие в реакционной способности этих акриловых мономеров, скорее всего, обусловлено различной степенью подвижности заместителей в мономерах. В акриламиде молочная кислота связана амидной (жёсткой, имеющей высокий потенциальный барьер для внутреннего вращения) связью, а в АГК заместитель связан сложноэфирной (легко вращающейся) связью. Поэтому стерические затруднения при полимеризации АГК, намного меньше, чем у АА-N-МГК и следовательно активность сложноэфирного мономера намного выше чем у амидного. Кроме того, электроотрицательность атома кислорода выше, чем у атома азота, поэтому плотность электронов двойной связи мономера сложного эфира будет в большей степени сдвинута в сторону заместителя. Такой сдвиг естественно приводит к возрастанию реакционной способности АГК из-за более лёгкого разрыва двойной связи.

Таким образом, в данной работе впервые синтезирован новый мономер на основе молочной кислоты - акриламидо- N-метиленмолочная кислота и изучена кинетика его радикальной полимеризации в различных средах. Показана возможность регулирования скорости радикальной полимеризации этого мономера изменением природы реакционной среды. Установлено, что реакционная способность изучаемого мономера при радикальной полимеризации намного меньше, чем у акрилоилгликолевой кислоты — соединения, где оксикислота связана с винильной группой сложноэфирной связью. Такое различие в активностях этих мономеров обусловлено

различной жёсткостью связей и электроотрицательностью атомов связывающих заместитель с винильной группой мономера.

ЛИТЕРАТУРА:

- [1]. Fong Liu, Marek W, Urban. // Progress in polymer science, №35, 2010, p. 3-23
- [2]. M.Motornov, Yuri Roiter, Sergey Minko. // Progress in polymer science, N 35, 2010, p. 174-211.
- [3]. Hyung –il Lee, Joanna Peetrosik, Sergeis S. Sheiko. // Progress in polymer science, №35, 2010, p. 24-44.
- [4]. Мухамедиев М.Г., Садыков З.М., Мусаев У.Н. // Докл. АН РУз.-2000.-№1.-С.52-53.
- [5]. Synthetic polymers for biotechnology and medicine / Editor Ruth Freitag. 2003, Eurekan.com, Austin, Texas USA, P.163
- [6]. Мусаев У.Н., Джахангиров Ф.Н., Режепов Ж., Махкамов М.А., Мухамедиев М.Г. // Наука о полимерах 21-му веку: Тез. докл. Четвертой всероссийской Каргинской конф. (Москва, 29 янв-2 февр. 2007). Москва, 2007. —С. 196.
- [7]. *Махкамов М.А., Мухамедиев М. Г, Мусаев У. Н.* // Вестник НУУз. Ташкент, 2003. -№ 3. -С.51-56.
- [8]. *Марч Дж*. Органическая химия. «Мир» ,т.2, 1988, с.370.
- [9]. *Кабанов В.А., Топчиев Д.А.* Полимеризация ионизирующитхся мономеров.-М.: Наука, 1975.-С. 15-103.

[10]. *Махкамов М.А., Мухамедиев М. Г, Мусаев У. Н. //* Вестник НУУз. - Ташкент, 2003, -№ 3. -С.51-56.

АННОТАЦИЯ

Мазкур мақола акриламид N-метилен сут кислотасининг радикал полимерланишини ўрганишга бағишланган, унда полимерланиш оеакциясининг тезлигига мухит рН таъсири кўрсатилган. Ингибирлаш усули асосида полимерланиш реакциясининг V_{uh} топилган ва K_u/K_y 0,5 қийматлари хисобланган.

SUMMARY

Radikal polymerization of akrilamid N-methilm lactic acid was investigated. It was influence of pH on the rate of polymerization. V_{in} of polymerization reaction was determined and also the values of $K_p/K_o^{-0.5}$ were calculated.