

SCIENTIFIC AND PRACTICAL CONFERENCE "ABU ALI IBN SINO (AVICENNA) AND INNOVATIONS IN MODERN PHARMACEUTICS"

May 21th, 2022
Tashkent city, Republic of Uzbekistan

ў ВБЕКИСТОЙ ТИББИЙ-ИЛМИЙ ФЛОЛИЯТ БИЛАН ШУГУЛЛАНУВЧИЛАР «ТАБОБЛІ" АКАДЕМИЯСИ РАМИИ

ЎЗБЕКИСТОН РЕСПУБЛИКАСИ СОҒЛИҚНИ САКЛАШ ВАЗИРЛИГИ

ТОШКЕНТ ФАРМАЦЕВТИКА ИНСТИТУТИ

ИБН СИНО ЖАМОАТ ФОНДИ

АБУ АЛИ ИБН СИНО ВА ЗАМОНАВИЙ ФАРМАЦЕВТИКАДА ИННОВАЦИЯЛАР

V ХАЛҚАРО ИЛМИЙ-АМАЛИЙ АНЖУМАН
МАҚОЛАЛАР ТЎПЛАМИ

АБУ АЛИ ИБН СИНО И ИННОВАЦИИ В СОВРЕМЕННОЙ ФАРМАЦЕВТИКЕ

СБОРНИК **V** МЕЖДУНАРОДНОЙ НАУЧНО-ПРАКТИЧЕСКОЙ КОНФЕРЕНЦИИ

Полученные результаты анализа листьев персика обыкновенного представлены ниже в таблице.

n .			_
Элементный	состав листьев	пепсика	обыкновенного
Out on the library	COCIAD UIIICIDOD	110p cilita	OODIILIIODCIIIIOIO

Эл.	мкг /кг	Эл.	мкг/кг	Эл.	мкг/кг	Эл.	мкг /кг	Эл.	мкг /кг
Li	0,091	K	4348.084	Cu	2,250	Nb	0,001	Ta	0,000
Ве	0,054	Ca	2409.684	Zn	4,365	Mo	0,036	W	0,014
В	3,688	Ti	1,008	Ga	0,118	Ag	0,002	Re	0,000
Na	204,118	V	0,403	Ge	0,001	Cd	0,008	Hg	0,066
Mg	890,218	Cr	0,756	As	0,097	In	0,000	Ti	0,001
Al	25,622	Mn	7,270	Se	0,090	Sn	0,158	Pb	0,114
Si	275,035	Fe	123,220	Rb	0,533	Sb	0,003	Bi	0,000
P	915,481	Со	0,022	Sr	1,541	Cs	0,001	U	0,006
S	677,931	Ni	2,368	Zr	0,015	Ba	0,821		

Как видно из таблицы, элементный состав листьев персика обыкновенного представлен 44 элементами. В наибольшем количестве накапливаются жизненно-важные элементы К и Са. Калий играет важную роль в регуляции водно-солевого обмена, поддержании тонуса и сокращений сердечной мышцы, а кальций нормализует проницаемость клеточных мембран, способствует образованию костной ткани и т.д. Уровень токсичных металлов (Cd и Pb) не превышает допустимых концентраций.

Выводы. Таким образом, согласно полученным результатам листья персика обыкновенного, произрастающего в Каракалпакстане, могут быть источником жизненно-важных макро- и микроэлементов.

К РАЗРАБОТКЕ НОВОГО ГИПОГЛИКЕМИЧЕСКОГО СБОРА

Бахридинова М.М., Икрамова М.Ш., Комилов Х.М.

Ташкентский фармацевтический институт e-mail: pharmi@pharmi.uz, тел. 256-39-54

Актуальность. В последние годы сахарный диабет приобретает характер неинфекционной эпидемии XXI века. По данным Международной федерации диабета (The International Diabetes Federation, IDF), в настоящее время насчитывается более 422 млн. больных сахарным диабетом, количество которых может увеличиться до 552 млн. в 2030 году. Развитие этого заболевания приводит к серьёзным осложнениям - поражениям сердечно-сосудистой, иммунной, костно-мышечной систем, сосудов головного мозга, кожи, диабетической нефропатии и ретинопатии, которые являются причиной инвалидности и высокой смертности больных. Ежегодно в мире по причине сахарного диабета и его осложнений умирает около 5 млн больных. Это больше, чем от вируса иммунодефицита человека, туберкулёза и малярии вместе взятых.

Синтетические сахароснижающие лекарственные средства, широко используются в современной фармакотерапии. Они обладают высокой терапевтической активностью, но могут стать при длительном применении причиной различных нарушений функций и структур организма вследствие нежелательных побочных явлений. По сравнению с ними лекарственные растения и, особенно, их оптимальные сочетания – сборы менее токсичны, легче усваиваются организмом, их можно использовать длительное время без особых осложнений. В силу комплексного воздействия содержащихся в них биологически активных веществ растительные препараты повышают эффективность лечения и профилактики сахарного диабета, улучшают обмен веществ, сопротивляемость организма, в результате чего уменьшаются медикаментозная нагрузка и риск побочных эффектов.

Принимая во внимание преимущества растительных сборов и потребность медицины в эффективных и безопасных гипогликемических препаратах, разработка, стандартизация и внедрение в

практику здравоохранения новых сборов и лекарственных средств на их основе для лечения сахарного диабета представляется практически важной задачей.

Исходя из вышесказанного, создание нового гипогликемического сбора явилось целью нашего исследования.

Материалы и методы. Компоненты сбора подбирали, исходя из данных литературы о фармакологических свойствах, химическом составе и опыте использования растительного сырья в народной и научной медицине, а также с учетом обеспеченности достаточной сырьевой базой по всем компонентам для организации его промышленного производства.

Полученные результаты. В результате нами были разработаны три композиции, сахароснижающая активность которых изучается в настоящее время на модели аллоксанового диабета.

Выводы. На основании результатов фармакологического скрининга будет установлен оптимальный состав нового гипогликемического сбора для дальнейшего исследования с целью внедрения в медицинскую практику.

ИНГИБИТОРЫ ТРИПСИНА ИЗ ЯДЕР ЗЕРЕН ГЛЕДИЧИЯ, СОИ, АМАРАНТА КУЛЬТИВИРУЕМЫХ В УЗБЕКИСТАНЕ

Адилова Н.А., Межлумян Л.Г.

Институт Химии растительных веществ им. акад. С.Ю. Юнусова АН РУз email: adilovanufuzaxon@gmail.com, тел. (99897)773-67-93

Актуальность. Практический интерес к белковым ингибиторам протеолитических ферментов животных, растений и микроорганизмов обусловлен широким их применениям в биохимических, исследованиях биотехнологии а также медицинской практике, в том числе при лечении онкологических заболеваний и СПИДа.

Цель. Получение лекарственных препаратов на основе ингибитора трипсина из семян растений.

Материалиы и методы. Объектах наших исследований были ядра семян *Gleditsia Triacanthos*, семена сои «Узбекистан-6», семена амаранта сорта «Узбекистан». Применяли современные методы белковой химии.

Полученные результаты. Схема очистка и выделения ингибиторов трипсина из обезжиренных семян включала экстракцию трис-HCl буфере рН 8.05. Экстракцию проводили дважды при комнатной температуре в течение 3х часов и в холодильнике в течение 16 часов. Центрифугировали объединенные экстракты, проводили осаждение сульфатом аммония, центрифугировали и полученный осадок диализовали в проточной воде. Диализат лиофильно сушили.

Ингибиторную активность определяли по методу Изотовой и Степановой, которая для гледичии составили 60,72%, для сои – 50,8% для амаранта- 55,86%.

Электрофорез в 12% ПААГ в диссоциирующих условиях показал содержание в ингибиторе трипсина из ядер семян гледичия 4 субъединицы (фракции) в случае ингибитора трипсина из амаранта- 5 субъединицы (фракций).

Вывод. Исследованные ингибиторы послужат основой для создания лекарственных препаратов.